Scientists Extend Telomeres To Slow Cell Aging

Will extending telomeres lead to longer, healthier lives? Researchers have taken an important step toward answering this question by developing a new treatment used in the laboratory that extends telomeres.
One of the key aspects of aging is the shortening of telomeres over time. Telomeres, which serve as protective "end caps" for chromosomes, help keep DNA healthy and functioning as it replicates. Unfortunately, these protective end caps become shorter with each DNA replication, and eventually are no longer able to protect DNA from sustaining damage and mutations. In other words, we get older.
An important step toward lengthening telomeres has now been made, which not only allows scientists to increase cell numbers for testing drugs, but may also hold a key to longer and healthier lives. This research was published online in The FASEB Journal.
To make this discovery, the researchers delivered modified mRNA encoding TERT, the enzyme that increases the length of telomeres by adding DNA repeats, to four groups of cells. The first group received modified mRNA encoding TERT, and the other three groups were controls that received either mRNA encoding an inactive form of TERT, the solution in which TERT is delivered, or no treatment. The telomeres of the first group (telomere-extending treatment group) were rapidly lengthened over a period of a few days, whereas the telomeres of the three control groups were not extended. The first group was also able to undergo more cell divisions, whereas the controls were not. Importantly for the potential safety of this approach, the telomeres of the first group resumed shortening after they were extended, showing that due to the short, transient treatment, the cells were not immortalized.
Further, all of the cell populations treated eventually stopped dividing, indicating that they were not immortalized. This approach has been tested on cell types including fibroblasts and myoblasts and is now being tested on stem cells. Additionally, this research showed that cells could be treated several times with enhanced effects on the capacity for division. Since the increase in numbers is compounded with each treatment, a small sample of cells, for example from a small biopsy, can be amplified to very large numbers.
In the short term, these findings will help understand how aging affects the molecular machinery of cells. The researchers hope that they can help prevent, delay or treat age-related conditions and diseases, as well as certain devastating genetic diseases of inadequate telomere maintenance.
Based on materials originally posted by Federation of American Societies for Experimental Biology.