Research Finds Non-Genetic Cancer Mechanism

Research Finds Non-Genetic Cancer Mechanism
Until now, genetic aberrations have been seen as the main cause of almost all cancer. However, a new breakthrough discovery has found that cancer can be caused solely by protein imbalances within cells.
The research, published in the journal Oncogene, demonstrates that protein imbalance is a powerful prognostic tool, indicating whether or not patients are likely to respond to chemotherapy and whether a tumour is likely to spread to other sites. The findings also open the possibility of new therapies aimed at measuring and preventing dangerous imbalances in cells.
The research focused on the "Akt pathway", a signalling pathway within cells that drives cancer formation and the spread of cancers through the body. Under normal conditions, the cell receives external signals through a cell wall-bound receptor (FGFR2 in this study). As a result of this stimulus the receptor is 'switched on' inside the cell. This results in the recruitment of signalling proteins and the initiation of the Akt pathway, which is responsible for committing the cell to proliferate. In some cancerous cells, this pathway is permanently switched on. A conventional approach to diagnosing this cancer would be to look for genetic modification of the receptor (or recruited proteins), which could be responsible for maintaining the switched on state.
The new study looked at isolated cancer cells without external stimulation and found that the "Akt pathway" could be activated without genetic modifications. Two proteins; Plcγ1 (pronounced "plc-gamma-1") and Grb2 (pronounced "grab-2"), compete for binding to FGFR2. The relative concentration of these proteins will dictate which one binds. When Plcγ1 prevails, it triggers the Akt pathway. In this way, an imbalance in the amount of the two proteins can lead to cell proliferation and cancer formation.
The researchers also looked at the process in a mouse model and found that Grb2 depletion results in the development of multiple tumours in the vicinity of a primary tumour, indicating that protein imbalance can have a role in metastasis, the spread of a cancer through the body. This makes sense because Plcγ1 can play a role in increasing cell movement.
Finally, the researchers looked at whether imbalance between Grb2 and Plcγ1 was predictive of the progress of ovarian cancers in patients. Measuring the levels of the proteins in patient tissues followed by database analysis of clinical information from The Cancer Genome Atlas and other sources revealed that a high level of Grb2 relative to Plcγ1 and FGFR2 was associated with a significantly more favourable prognosis than patients with elevated levels of Plcγ1.
Statistical data reveal that just under 40% of patients with a favourable balance were still alive seven years after samples were taken. Less than 10% of patients with high levels of Plcγ1 and FGFR2 binding sites survived the same length of time.
"From the patient's point of view, the key findings are that these proteins are biomarkers. They could offer information to clinicians on who is going to benefit from therapy and, just as importantly, who is not. On the treatment side, the proteins' interaction could be a valid therapeutic target: you could, for instance, target Plcγ1 to ensure it does not overwhelm the cell," the researchers said.
Based on material originally posted by University of Leeds.