Mouth Guard Monitors Health Markers

Mouth Guard Monitors Health Markers
The mouth guard sensor offers an easy and reliable way to
monitor uric acid levels in human saliva. (Credit:
Jacobs School of Engineering, UC San Diego)
Engineers have developed a mouth guard that can monitor health markers, such as lactate, cortisol and uric acid, in saliva and transmit the information wirelessly to a smart phone, laptop or tablet.

The technology, which is at a proof-of-concept stage, could be used to monitor patients continuously without invasive procedures, as well as to monitor athletes' performance or stress levels in soldiers and pilots. In this study, the engineers focused on uric acid, which is a marker related to diabetes and to gout. Currently, the only way to monitor the levels of uric acid in a patient is to draw blood. The research was published in the journal Biosensors and Bioelectronics.
 
Testing the sensors
In this study, researchers showed that the mouth guard sensor could offer an easy and reliable way to monitor uric acid levels. The mouth guard has been tested with human saliva but hasn't been tested in a person's mouth.
 
Researchers collected saliva samples from healthy volunteers and spread them on the sensor, which produced readings in a normal range. Next, they collected saliva from a patient who suffers from hyperuricemia, a condition characterized by an excess of uric acid in the blood. The sensor detected more than four times as much uric acid in the patient's saliva than in the healthy volunteers.
 
The patient also took Allopurinol, which had been prescribed by a physician to treat the condition. Researchers were able to document a drop in the levels of uric acid over four or five days as the medication took effect. In the past, the patient would have needed blood draws to monitor levels and relied instead on symptoms to start and stop his medication.
 
Fabrication and design
The researchers created a screen-printed sensor using silver, Prussian blue ink and uricase, an enzyme that reacts with uric acid. Because saliva is extremely complex and contains many different biomarkers, researchers needed to make sure that the sensors only reacted with the uric acid. Nanoengineers set up the chemical equivalent of a two-step authentication system. The first step is a series of chemical keyholes, which ensures that only the smallest biochemicals get inside the sensor. The second step is a layer of uricase trapped in polymers, which reacts selectively with uric acid. The reaction between acid and enzyme generates hydrogen peroxide, which is detected by the Prussian blue ink. That information is then transmitted to an electronic board as electrical signals via metallic strips that are part of the sensor.
 
The electronic board uses small chips that sense the output of the sensors, digitizes this output and then wirelessly transmits data to a smart phone, tablet or laptop. The entire electronic board occupies an area slightly larger than a U.S. penny.
 
The next step is to embed all the electronics inside the mouth guard so that it can actually be worn. The researchers will also have to test the materials used for the sensors and electronics to make sure that they are indeed completely biocompatible.
 
Based on material originally posted by University of California - San Diego.
If you appreciate our work, consider making a contribution