Microwave Helmet Yields Fast And Safe Evaluation Of Head Injuries

A microwave helmet is placed on the patient's head and the brain tissue is examined with the aid of microwave radiation. ​Illustration: Boid
A microwave helmet is placed on the patient's head
and the brain tissue is examined with the aid of
microwave radiation. ​Illustration: Boid
Results from a clinical study demonstrates that microwave measurements can be used for a rapid detection of intracranial bleeding in traumatic brain injuries. The study, published in the Journal of Neurotrauma, shows that health care professionals get vital information and can quickly decide on appropriate treatment if patients are examined using a microwave helmet.

Previously, microwave measurements have been used to distinguish stroke caused by bleeding in the brain from stroke caused by clot. The new study shows that the technology also applies to patients affected by traumatic brain injury, which is the most common cause of death and disability among young people. This type of injuries are often caused by traffic accidents, assaults or falls. An estimated 10 million people are affected annually by traumatic brain injuries.

The study compared 20 patients hospitalized for surgery of chronic subdural hematoma - a serious form of intracranial bleeding - with 20 healthy volunteers. The patients were examined with microwave measurements which were compared to traditional CT scans. The results show that microwave measurements have great potential to detect intracranial bleeding in this group of patients.

"The result is very promising even though the study is small and only focused on one type of head injury. The microwave helmet could improve the medical assessment of traumatic head injuries even before the patient arrives at the hospital", says Johan Ljungqvist specialist in neurosurgery at the Sahlgrenska University Hospital. "The result indicates that the microwave measurements can be useful in ambulances and in other care settings."

Further studies of acute head injury patients are ongoing and planned in Sweden and abroad.

"Microwave technology has the potential to revolutionize medical diagnostics by enabling faster, more flexible and more cost-effective care", says Mikael Persson, professor of biomedical engineering at Chalmers University of Technology. "In many parts of the world microwave measurements systems can become a complement to CT scans and other imaging systems, which are often missing or have long waiting lists."